M1.(a) (i) $2C_6H_{12}O_6 \longrightarrow 3CH_3COCH_3 + 3CO_2 + 3H_2O$ Or multiples

 (b) (i) CH₃CH(OH)CH₃ + [O] → CH₃COCH₃ + H₂O
 Any <u>correct</u> representation for the two organic structures. Brackets not essential. Not "sticks" for the structures in this case

- (ii) Secondary (alcohol) OR 2° (alcohol)
- (c) **M1** $q = m c \Delta T$
 - *OR* q =150 × 4.18 × 8.0 *Award full marks for <u>correct answer</u> In M1*, do not penalise incorrect cases in the formula
 - M2 = (±) 5016 (J) *OR* 5.016 (kJ) *OR* 5.02 (kJ) (also scores M1)
 - M3 This mark is for dividing correctly the number of kJ by the number of moles and arriving at a final answer in the range shown. Using 0.00450 mol

therefore $\Delta H = -1115$ (kJ mol⁻¹)

OR <u>– 1114.6</u> to <u>– 1120</u> (kJ mol⁻¹)

Range (+)1114.6 to (+)1120 gains 2 marks

BUT – 1110 gains 3 marks and +1110 gains 2 marks

1

1

1

AND - 1100 gains 3 marks and +1100 gains 2 marks

Award full marks for correct answer In **M1**, do not penalise incorrect cases in the formula Penalise **M3** ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks Penalise **M2** for arithmetic error and mark on If $\Delta T = 281$; score $q = m c \Delta T$ only If c = 4.81 (leads to 5772) penalise **M2** ONLY and mark on for **M3** = - 1283 Ignore incorrect units in **M2** If units are given in **M3** they <u>must be either kJ or kJ mol⁻¹</u> in this case

3

- (d) **M1** The <u>enthalpy change</u> / <u>heat change at constant pressure</u> when <u>1 mol</u> of a compound / substance / element
 - M2 is <u>burned / combusts / reacts completely</u> in <u>oxygen</u> OR burned / combusted / reacted in excess oxygen
 - M3 with (all) <u>reactants and products / (all) substances in standard /</u> <u>specified states</u>

OR

(e)

(all) <u>reactants and products / (all)</u> <u>substances in normal states under standard</u> <u>conditions</u> / 100 kPa / 1 bar <u>and</u> specified T / 298 K

> For **M3** Ignore reference to 1 atmosphere

M1 $\frac{\sum B (reactants) - \sum B (products) = \Delta H}{OR}$ Sum of bonds broken - Sum of bonds formed = ΔH OR 2B(C-C) + B(C=O) + 6B(C-H) + 4B(O=O) (LHS) $- 6B(C=O) - 6B(O-H) (RHS) = \Delta H$ M2 (also scores M1) 2(348)+805+6(412)+4(496) [LHS = 5957](696) (2472) (1984) $- 6(805) - 6(463) [RHS = (-) 7608] = \Delta H$ (4830) (2778) OR using only bonds broken and formed (5152 - 6803)

M3 Δ*H*= <u>- 1651</u> (kJ mol⁻¹)

Candidates may use a cycle and gain full marks.

Correct answer gains full marks

Credit 1 mark for (+) 1651 (kJ mol^{-1})

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication / addition error; this would score 2 marks (**M1** and **M2**)

• If no AE, check for a correct method; this requires either a correct cycle with 4O₂, 3CO₂ and 3H₂O OR a clear statement of M1 which could be in words and scores <u>only M1</u>

Allow a maximum of one mark if the <u>only</u> scoring point is LHS = 5957 (or 5152) OR RHS = 7608 (or 6803)

Award 1 mark for + 1651

(f) For the two marks M1 and M2, <u>any two</u> from

- <u>heat</u> loss or not all <u>heat</u> transferred to the apparatus or <u>heat</u> absorbed by
 the apparatus or (specific) heat capacity of the apparatus not considered
- incomplete combustion / not completely burned / reaction is not complete
- The idea that the water may end up in the gaseous state (rather than liquid)
- reactants and / or products may not be in standard states.
- MBE data refers to gaseous species but the enthalpy of combustion refers to liquids in their standard states / liquid propanone and liquid water in standard states
- MBE <u>do not refer to specific compounds</u> OR MBE <u>values vary with</u> <u>different compounds / molecules</u> OR are average / mean values taken <u>from a range of compounds / molecules</u>

Apply the list principle but ignore incomplete reasons that contain correct chemistry

Ignore "evaporation"

Ignore "faulty equipment"

Ignore "human error"

Not enough simply to state that "MBE are mean / average values"

2

M2.Increase in volume

Smaller increase in T above room temperature Or increased contact between calorimeter and water Or smaller heat loss by evaporation / from the surface 1 **M3.**(a) $C_6H_{11}OH + \frac{8^1_2O_2}{2} \longrightarrow 6CO_2 + 6H_2O$ 1 (b) Temperature rise = 20.1 $q = 50.0 \times 4.18 \times 20.1 = 4201$ (J) 1 Mass of alcohol burned = 0.54 g and M_r alcohol = 100.0: mol of alcohol = n = 0.54 / 100 = 0.00541 Heat change per mole = q / 1000n **OR** q / n= 778 kJ mol⁻¹ **OR** 778 000 J mol⁻¹ 1 $\Delta H = -778 \text{ kJ mol}^{-1} \text{ OR} -778 000 \text{ J mol}^{-1}$ M4 is for answer with negative sign for exothermic reaction Units are tied to the final answer and must match 1 (c) Less negative than the reference 1

Heat loss **OR** incomplete combustion **OR** evaporation of alcohol **OR** heat transferred to beaker not taken into account

1

[2]

1

1

(d) Water has a known density (of 1.0 g cm^{-3})

Therefore, a volume of 50.0 cm³ could be measured out

[9]

M4.(a)

 $\begin{array}{ccc} \textbf{M1} \quad \textbf{C}_6\textbf{H}_{12}\textbf{O}_6 & \longrightarrow & \textbf{2}\textbf{CH}_3\textbf{CH}_2\textbf{O}\textbf{H} & +\textbf{2}\textbf{CO}_2 \\ & (2\textbf{C}_2\textbf{H}_5\textbf{O}\textbf{H}) \end{array}$

Penalise C_2H_6O for ethanol in **M1**.

M2 and M3

•

Mark M2 and M3 independently.

Any two conditions in any order for M2 and M3 from

- (enzymes from) yeast or zymase
- $25 \degree C \le T \le 42 \degree C$ OR $298 \space K \le T \le 315 \space K$
 - <u>anaerobic / no oxygen / no air</u> OR neutral pH A lack of oxygen can mean either without oxygen or not having enough oxygen and does not ensure <u>no oxygen</u>, therefore only credit "lack of oxygen" if it is qualified. Penalise 'bacteria', 'phosphoric acid', 'high pressure' using the list principle.

M4 (fractional) distillation or GLC

Ignore reference to 'aqueous' or 'water' (ie not part of the list principle).

M5 Carbon-neutral in this context means

There is no <u>net / overall</u> (annual) <u>carbon dioxide / CO₂ emission</u> to the <u>atmosphere</u>

OR

There is no change in the <u>total amount / level</u> of <u>carbon dioxide / CO_2 present</u> in the atmosphere

(b) M1 q = m c ∆T (this mark for correct mathematical formula) Full marks for M1, M2 and M3 for the <u>correct answer</u>. In M1, do not penalise incorrect cases in the formula.

M2 = (75 × 4.18 × 5.5)

1724 (J) OR 1.724 (kJ) OR 1.72 (kJ) OR 1.7 (kJ)

(also scores M1)

Ignore incorrect units in M2.

M3 Using 0.0024 mol

therefore $\Delta H = -718$ (kJ mol⁻¹)

(Accept a range from -708 to -719 but do not penalise more than 3 significant figures)

Penalise **M3** ONLY if correct numerical answer but sign is incorrect. Therefore **+718 gains two marks**. If units are quoted in **M3** they must be correct. If $\Delta T = 278.5$, CE for the calculation and penalise **M2** and **M3**.

M4 and M5 in any order

Any **two** from

- incomplete combustion
- heat loss
- heat capacity of Cu not included
- some ethanol lost by evaporation
- not all of the (2.40 × 10⁻³ mol) ethanol is burned / reaction is incomplete
 If c = 4.81 (leads to 1984) penalise M2 ONLY and mark on
 for M3 = 827

5

(c) (i) M1 enthalpy / heat / energy change (at constant pressure) or enthalpy / heat / energy needed in <u>breaking / dissociating (a) covalent bond(s)</u> Ignore bond making.

M2 averaged for that type of bond over different / a range of molecules /

Ignore reference to moles.

(ii) **M1**

 $\Sigma B(reactants) - \Sigma B(products) = \Delta H$

OR

<u>Sum of bonds broken</u> – <u>Sum of bonds formed</u> = ΔH

OR

B(C-C) + B(C-O) + B(O-H) + 5B(C-H) + 3B(O=O)- 4B(C=O) - 6B(O-H) = ΔH = -1279

Correct answer gains full marks.

Credit 1 mark for - 496 (kJ mol⁻¹)

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either

a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**).

If no AE, check for a correct method; this requires either a correct cycle with $2CO_2$ and $3H_2O$ OR a clear statement of **M1** which could be in words and scores <u>only M1</u>.

M2 (also scores **M1**) 348+360+463+5(412)+ 3B(O=O)

(3231) (or 2768 if O–H cancelled) $-4(805) - 6(463) = \Delta H = -1279$

(**5998**) (or **5535** if O–H cancelled)

3B(O=O) = 1488 (kJ mol⁻¹)

Credit a maximum of one mark if the <u>only</u> scoring point is bonds formed adds up to **5998 (or 5535) OR** bonds broken includes the calculated value of **3231 (or 2768)**.

М3

B(O=O) = <u>496</u> (kJ mol⁻¹)

Award 1 mark for -496

Students may use a cycle and gain full marks

3

	Record the temperature every subsequent minute for about 5 minutes Allow record the temperature at regular time intervals untilsome time after all the solid has dissolved for M2	1
	Plot a graph of temperature vs time	1
	Extrapolate back to time of mixing = 0 and determine the temperature	1
(b)	Heat taken in = <i>m</i> × <i>c</i> × Δ <i>T</i> = 50 × 4.18 × 5.4 = 1128.6 J Max 2 if 14.6 °C used as Δ <i>T</i>	1
	Moles of KCI = 5.00 / 74.6 = 0.0670	1
	Enthalpy change per mole = +1128.6 / 0.0670 = 16 839 J mol ⁻¹	1
	= +16.8 (kJ mol ⁻¹) Answer must be given to this precision	1
(c)	$\Delta H_{\text{solution}} = \Delta H_{\text{lattice}} + \Delta H(\text{hydration of calcium ions}) + 2 \times \Delta H(\text{hydration of chloride ions})$	

 $\Delta H_{\text{lattice}} = \Delta H_{\text{solution}} - \Delta H$ (hydration of calcium ions) -2 × Δ H(hydration of chloride ions)

1

$$\Delta H_{\text{lattice}} = -82 - 9 - (-1650 + 2 \times -364) = +2295 \text{ (kJ mol}^{-1}\text{)}$$

(d) Magnesium ion is smaller than the calcium ion

Therefore, it attracts the chloride ion more strongly / stronger ionic bonding

1 [12]

1